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Abstract
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ly reported to maintain the cellular heterogeneity of pancre-
atic cancer. However, the function of GREM1 in endometrial
cancer remains elusive. The purpose of this study was to in-
vestigate the underlying mechanisms of GREM1 in endome-
trial cancer using an ensemble learning-based framework.

Methods: The training and test cohorts were gathered from
The Cancer Genome Atlas and Genome Expression Om-
nibus databases, respectively. The cohorts were divided
into low-GREM1 and high-GREM1 groups. Differentially
expressed gene analysis, weighted gene co-expression net-
work analysis, and Mfuzz clustering were implemented in
the training cohort to screen genes with GREM1. The genes
were subjected to machine learning-based integration for
selecting key genes with GREM1. Together with the Bayes-
ian network inference and Kyoto Encyclopedia of Genes and
Genome enrichment analysis on key genes and GREM1, the
potential pathway of GREM1 in endometrial cancer was il-
lustrated. Leveraging the CIBERSORT analysis tool and sin-
gle sample gene set enrichment analysis, the immune land-
scape of endometrial cancer was investigated to identify the
immune cells with GREM1 and key genes.

Results: A set of 10 key genes (FAP, THBS1, POSTN, INH-
BA, ASPN, COL3A1, IGFBP5, COL8A1, FN1, and COL5A2)
highly linked to GREM1 were obtained. Moreover, GREM1
may regulate extracellular matrix-related pathways in en-
dometrial cancer, affecting extracellular matrix degradation
involving collagen-related key genes. Finally, we found in-
creased infiltration of mast cells in the high-GREM1 group,
accompanied by their positive correlations.

Conclusions: GREM1 regulated extracellular matrix modu-
lation in endometrial cancer by interacting with key genes,
with mast cells serving as a signature.
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Introduction

Global cancer statistics released in 2020 indicated that endometrial
cancer has become the sixth most common gynecological tumor,
with an estimated 417,367 new cases and 97,370 deaths world-
wide.! The American Cancer Society also reported an increasing
incidence and mortality trend for endometrial cancer in recent
years, which underscores the urgent demand to develop more ef-
fective strategies for diagnosis and treatment.? As endometrial can-
cer is frequently symptomatic and detectable at an early stage, such
as abnormal vaginal bleeding, most cases are diagnosed at Stage
I and have favorable outcomes after prompt surgically curable.>*
However, worse clinical outcomes often occurred in patients with
advanced-stage, recurrence, or metastatic endometrial cancers,
partly direct to the abnormal molecular features of the highly ag-
gressive tumor cells gained in the disease progress.>-®

Gremlin-1 (GREM1), a bone morphogenic protein (BMP) an-
tagonist, has been known to induce carcinogenesis through multiple
mechanisms, such as BMP dependent pathway or vascular endothe-
lial growth factor receptor (VEGFR) signaling pathway.” Previous
studies have indicated elevated expression levels and carcinogenic
roles of GREM1 in various malignancies, such as carcinomas of lung,
ovary, kidney.® Recently, GREM1 was identified as a critical regula-
tor of cellular heterogeneity in pancreatic cancer whose over-expres-
sion could restrict epithelial-to-mesenchymal transition by interacting
with BMP, inhibiting tumor metastasis.” Cheng et al. showed that
GREMI1 promotes lineage plasticity and castration resistance by tar-
geting fibroblast growth factor receptor 1, which is a candidate thera-
peutic target for prostate cancer.!” These inspiring findings provide a
new perspective for understanding the function of GREM1 in cancer
progression and treatment. Nevertheless, little evidence has illustrated
the certain underlying role of GREM1 in endometrial cancer. Accord-
ingly, more efforts should be urgently dedicated to elucidating the
mechanism of GREM1 in endometrial cancer.

Herein, we conducted a comprehensive bioinformatics work-
flow, accompanied by machine learning-based integration, to ex-
plore the underlying mechanism of GREM1 in endometrial can-
cer. First, the gene expression profiles of endometrial cancer were
obtained through The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases, which were used as the
training cohort and test cohort respectively. The mRNA and pro-
tein expression patterns of GREM1 were then explored at the pan-
cancer level, including endometrial cancer. Second, we classified
the training cohort into low-GREM1 and high-GREM1 groups and
identified the differentially expressed genes (DEGs) between the
two groups. The Weighted Gene Co-expression Network Analy-
sis (WGCNA) and Mfuzz clustering were conducted to discern
gene expression patterns highly related to the high-GRME1 group.
Third, we took the intersection of genes associated with high-
GREMI generated by the DEGs analysis, WCGNA, and Mfuzz.
Subsequently, these genes were subjected to a machine learning-
based integration procedure for further selection.!! Fourth, we as-
sessed the classification performance of the selected key gene on
low- and high-GREM1 groups. We then investigated the potential
mechanism of GREM1 through the combination of pathway en-
richment analysis and Bayesian network (BN) inference on key
genes. To deepen the illustration of the underlying mechanism of
GREMI1 in immune regulation, we further explored the association
of the key genes (GREM1 was also included) with immune-cell
infiltration in endometrial cancer. Overall, our study revealed the
potential pathways of GREM1 in endometrial cancer from integra-
tive bioinformatics methods, which might expand our understand-
ing of its function in tumor development.
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Table 1. Sample size of datasets used in this study

Dataset Sample size

TCGA-UCEC 589 samples (35 controls; 554 tumors)
GSE2109 17 tumors

GSE17025 91 tumors

GSE36389 20 tumors

GSE106191 64 tumors

GSE115810 24 tumors

TCGA-UCEC, The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma.

Material and methods

Data gathering and processing

The gene expression profiles of endometrial cancer were collected
from the TCGA database (https://portal.gdc.cancer.gov/) and the
GEO database (http://www.ncbi.nlm.nih.gov/geo). The training
cohort [Cancer Genome Atlas-Uterine Corpus Endometrial Car-
cinoma (TCGA-UCEC)] was acquired from the TCGA database
using TCGA biolinks R package, including 35 normal endometrial
tissues and 554 endometrial cancer tissues.'? The test cohort was
obtained from five GEO datasets using the GEOquery R package,
including GSE2109, GSE17025, GSE36389, GSE106191, and
GSE115810.13-16 The probes were then transformed to official
gene symbols through the platform annotations. The raw count
data from TCGA was converted into transcripts per kilobase mil-
lion format and subjected to the log2 transformation process. The
raw count data from GEO were processed with the limma and sva
R packages for log, transformation, normalization, and batch effect
removal. The five GEO datasets were merged into the test cohort,
which contained 216 endometrial cancer samples. The sample size
of the included analysis of GREM1 expression in pan-caner and
endometrial cancer datasets is shown in Table 1.

Leveraging the TCGA, genotype-tissue expression (GTEx),
and clinical proteomic tumor analysis consortium (CPTAC) data-
bases, we explored the mRNA and protein expression distribution
of GREM1 across extensive cancer types. The datasets used in this
part can be found in Table 2. The tumor immune estimation re-
source (TIMER) online tool (https://cistrome.shinyapps.io/timer/)
was to investigate the GREM1 expression pattern in the TCGA
database.!” The R package ggplot2 was used to characterize the
GREMI1 expression pattern of TCGA target GTEx datasets from
The University of California Santa Cruz (UCSC) Genome Brows-
er database (https://xenabrowser.net/).'8 Subsequently, the protein
expression distributions of GREM1 on the CPTAC database were
evaluated by The University of ALabama at Birmingham CAN-
cer (UALCAN) online tool (http://ualcan.path.uab.edu).'® Addi-
tionally, the Human Protein Atlas (HPA) database (https://www.
proteinatlas.org/) was used to demonstrate the differential protein
expression of GREM1 in normal endometrial tissue versus endo-
metrial cancer tissue.

Analysis of GREM1 expression on prognosis and clinicopatho-
logical characteristics in different cancers

Herein, we focused on the prognosis and clinicopathological
feature analyses of 12 cancer types: breast invasive carcinoma
(BRCA), cholangiocarcinoma, head and neck squamous cell car-
cinoma (HNSC), lung adenocarcinoma, lung squamous cell car-
cinoma (LUSC), stomach adenocarcinoma (STAD), glioblastoma
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Table 2. Datasets used for pan-cancer analysis

Gene Expr

Tool/database for

. Dataset list
pan-cancer analysis

TIMER

TCGA-ACC, TCGA-BLCA, TCGA-BRCA, TCGA-CESC, TCGA-CHOL, TCGA-COAD, TCGA-DLBC, TCGA-ESCA,

TCGA-GBM, TCGA-HNSC, TCGA-KICH, TCGA-KIRC, TCGA-KIRP, TCGA-LAML, TCGA-LGG, TCGA-LIHC, TCGA-
LUAD, TCGA-LUSC, TCGA-MESO, TCGA-OV, TCGA-PAAD, TCGA-PCPG, TCGA-PRAD, TCGA-READ, TCGA-SARC,
TCGA-SKCM, TCGA-STAD, TCGA-TGCT, TCGA-THCA, TCGA-THYM, TCGA-UCEC, TCGA-UCS, TCGA-UVM.

UCsC GBM, GBMLGG, LGG, UCEC, BRCA, CESC, LUAD, ESCA, STES, KIRP, KIPAN, COAD, PRAD, STAD, HNSC,
KIRC, LUSC, LIHC, WT, SKCM, BLCA, THCA, READ, OV, PAAD, TGCT, UCS, LAML, PCPG, ACC, KICH, CHOL.

UALCAN

Breast cancer, colon cancer, uterine corpus endometrial carcinoma, lung adenocarcinoma, pancreatic

adenocarcinoma, head and neck squamous carcinoma, glioblastoma.

ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multi-
forme; GBMLGG, glioma; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIPAN, Pan-kidney; KIRC, kidney renal clear cell carcinoma; KIRP, kidney
renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous
cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate
adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; STES, stomach and esophageal carcinoma;
TCGA, The Cancer Genome Atlas; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, Thymoma; UALCAN, The University of ALabama at Birmingham CANCcer;
UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UCSC, The University of California Santa Cruz; UVM, uveal melanoma; WT, high-risk Wilms tumor.

multiforme(GBM), kidney chromophobe (KICH), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), thyroid carcinoma (THCA), and uterine corpus endome-
trial carcinoma (UCEC), which displayed the differential expres-
sion of GREM1 compared with the normal controls, in the TCGA
database. To gain insight into the effect of GREM1 expression on
the prognosis and clinicopathological characteristics of tumor pa-
tients, the gene expression profiling interactive analysis tool was
first used to perform the prognosis analysis. Kaplan-Meier (K-M)
curves for overall survival (OS) were performed to investigate the
prognostic differences between the low-GREM1 and high-GREM1
expression groups. Clinicopathological characteristics of 12 cancer
types, containing age, tumor grade, T/N/M stage, and tumor stage,
were downloaded from the UCSC database. Samples with miss-
ing or incomplete clinicopathological information were excluded
from the analysis. Then, we delineated and explored the GREM1
expression distributions in different clinicopathological character-
istic groups using the ComplexHeatmap and ggpbur R packages.

Identification of DEGS in the low-GREM1 and high-GREM1
expression groups

The normal endometrial samples of the training cohort were exclud-
ed. The endometrial cancer samples were classified into low-GREM 1
group and high-GREMI1 group according to the medium value of
GREMI1 expression. Leveraging the limma R package, the differ-
ential expression analysis was performed to screen out the DEGs
between the low-GREM1 and high-GREM1 groups. The screening
criteria for DEGs were set as [log,Fold Change| > 1 and adjusted p
< 0.05.2% Then, the pheatmap R package was used to showcase the
differential expression pattern of DEGs among the low-GREM1 and
high-GREM1 groups. Moreover, we conducted Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis on these
screened DEGs, and the enriched pathways with g < 0.05 were con-
sidered significant.?’ The CBNplot R package was used to construct
a regulatory network of the 10 most enriched KEGG pathways with
the Bayesian network and gene expression profile.?!

Weighted gene co-expression network analysis

The WGCNA R package was used to generate a gene co-ex-
pression network using the expression profile of the training co-
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hort.22 Sample labels in the cohort were previously grouped into
low-GREM1 and high-GREM traits. The optimal soft threshold
power (B = 1-20) was initially calculated to determine the scale-
free topology of the network. Then, we constructed a weighted
adjacency matrix and transformed it into a topological overlap
matrix (TOM). Moreover, the dissTOM was obtained for hierar-
chical clustering. The dynamic tree-cutting method was adopted to
identify various modules clustered by gene similarity. Herein, we
set minModuleSize to 60 and MEDissThres to 0.3. Subsequently,
we related the recognized modules to two traits (low-GREM1 and
high-GREM1). Genes in the module that had high relevance with
high-GREM1 were retained for subsequent analysis.

Mfuzz clustering analysis

The Mfuzz R package uses the fuzzy c-means clustering algorithm
to cluster GREM1 expression patterns.?> We first obtained distinct
clustering patterns according to the ascending GREM1 expression.
To investigate the relationship of clustering patterns with GREM1,
each sample of the expression profile was subjected to single sam-
ple Gene Set Enrichment Analysis (ssGSEA) to assign the scores
of clustering patterns.?* We further explored the clustering charac-
teristics between low-GREM1 and high-GREM1 expression. The
correlation of clustering patterns and GREM1 was investigated,
with the patterns closely related to GREM1 selected for further
analysis.

Potential biological functions, pathways, and diseases of the
hub genes

We intersected the genes in the WGCNA module and Mfuzz clus-
tering patterns highly related to GREM1 with DEGs, thus gaining
the hub genes linked to GREM1 expression. To explore the poten-
tial biological functions, pathways, and associated diseases of hub
genes, gene ontology (GO), KEGG, and disease ontology (DO)
enrichment analyses were conducted using the clusterProfiler and
DOSE R packages.

Key genes generated from the machine learning-based combi-
nations and protein-protein interaction network

To perform feature selection on hub genes, we integrated 12 ma-
chine-learning algorithms and 113 algorithm combinations. The
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machine learning algorithms for integration included absolute
shrinkage and selection operator, ridge, elastic network, stepwise
multiple generalized linear model, support vector machine, a gen-
eralized linear model with likelihood-based boosting (GLMBoost),
linear discriminant analysis, partial least squares regression for
generalized linear models, RandomForest, gradient boosting, eX-
treme gradient boosting, and NaiveBayes. One algorithm was used
to select features and another was used to construct a classifica-
tion model using the leave-one-out cross-validation framework.!!
For each model integration, area under curve (AUC) scores within
the training and test cohort were calculated under cross-validation.
The classification model performed with the highest AUC score
was considered optimal, thus the selected features for the model
establishment were then obtained. Furthermore, the String data-
base was used to construct the feature gene-dominated Protein-
Protein Interaction (PPI) network, and the top 10 key genes with
high betweenness with GREM1 in the network were obtained by
the Cytoscape software (version 3.9.1).2526 We then visualized
the chromosomal locations of the 10 key genes. Moreover, we as-
sessed the principal component analysis (PCA) scores, expression
distributions in low-GREM1 and high-GREM1 groups, and cor-
relations of key genes within the training and test cohorts.

Validation of key genes for distinguishing from the low-GREM1
and high-GREM1 groups

To assess whether the screened key genes could accurately distin-
guish from the low-GREM1 and high-GREM1 groups, the glmnet
R package was first used to construct a logistic regression model
using key genes within the training cohort. The model was illustrat-
ed in a nomogram developed with the rms R package. The ability
of the model to classify low-GREMI1 and high-GREM1 groups was
then systemically assessed by AUC scores, calibration curves, and
decision curve analysis (DCA) in the training and test cohorts.?”

Potential pathways and regulatory networks of key genes with
GREM1

The regulatory relationship between GREM1 and key genes was
inferred through the CBNplot R package. To further investigate the
key gene-regulated pathways in endometrial cancer, the cluster-
Profiler R package was used to conduct KEGG enrichment analy-
sis of the key genes. The enriched KEGG pathways with ¢ val-
ues <0.05 were considered significant differences.?? Additionally,
we depicted the regulatory network of pathways, and the genes
enriched in the core pathways with more edges and interaction
strengths using the CBNplot R package. To verify the in-silico re-
sults, the experimental evidence at the protein level was retrieved
from the HPA database to show the expression of the key genes in
endometrial cancer tissues.

Correlation of key genes with GREM1 with immune infiltration
cells

Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT) and ssGSEA were applied to estimate
infiltration degrees of different immune cell types, in which CIB-
ERSORT performs deconvolution and ssGSEA marks enriched
scores on bulk RNA-seq data using immune-cell signature.?8:2°
The permutations of CIBERSORT were set as 1,000 and the cal-
culated results with p < 0.05 were retained for subsequent analy-
sis.3? We explored the infiltration patterns of immune cells in low-
GREMI1 and high-GREMI1 groups. The relationship between key
genes and immune-cell infiltration was then examined by Spear-
man’s correlation approach.

Zhu Y.H. et al: Mechanism of GREM1 in endometrial cancer

Statistical analysis

Statistical analysis was performed with R programming lan-
guage (version 4.2.0). Wilcoxon test was performed to evaluate
the mRNA expression of GREM1 in tumor tissue compared with
normal tissues. Wilcoxon test was also carried out to investigate
the expression distribution of GREM1 in different groups based
on clinicopathological characteristics, including age, tumor grade,
T/N/M stage, and tumor stage. An unpaired 7-test was used to esti-
mate the differential expression of GREM1 protein associated with
key genes, and immune-cell infiltration levels in the two groups.
Log-rank test was used to analyze differences in OS between
the low-GREMI1 and high-GREMI1 expression groups. Spear-
man’s correlation method was adopted to analyze the association
of GREM1 and Mfuzz clustering patterns and Pearson’s method
for hub gene co-expression relationships. Spearman’s correlation
analysis was performed to show whether there was a close rela-
tionship between extracellular matrix (ECM) signatures and the
expression of GREM1 in different cancers, and p < 0.05 was con-
sidered statistically significant.

Results

GREMI1 was downregulated in different types of cancer and
endometrial cancer

First, the expression profiles of GREM1 across different cancer
types were investigated via TIMER. Figure la shows that lower
expression levels of GREM1 were observed in glioblastoma
multiforme (GBM), KICH, KIRC, KIRP, THCA, and UCEC (all
< 0.05). Next, we found that GREM1 was significantly under-
expressed in 14 types of cancer compared with normal tissue in
the TCGA target GTEx datasets, including GBM, glioma (GBM-
LGG), low-grade glioma (LGG), UCEC, cervical squamous cell
carcinoma and endocervical adenocarcinoma, KIRP, pan-kidney,
KIRC, high-risk Wilms tumor, skin cutaneous melanoma, THCA,
uterine carcinosarcoma, adrenocortical carcinoma, and KICH (Fig.
1b). UALCAN was used to explore the protein expression levels
of GREM1 in seven cancer types, which showed significant down-
regulation of GREM1 in UCEC and glioblastoma (all p < 0.05;
Fig. 1c). We also observed significant downregulation of GREM1
in endometrial cancer compared with control tissue (all p < 0.05;
Fig. 1d and f). Immunohistochemical staining patterns of GREM1
in normal endometrial tissue and endometrial cancer tissue were
retrieved from the HPA database. The staining scores shown in
Figure 1g and h show that GREM1 expression was significantly
lower in endometrial cancer than in normal endometrial tissue.
These results show that GREM1 was downregulated in endome-
trial cancer.

High expression of GREM is related to poor prognosis and clin-
icopathological characteristics

Leveraging the 12 tumors with differential expression patterns
compared with normal controls in the TCGA database, we ana-
lyzed the effect of GREM1 expression on tumor prognosis and
clinicopathological characteristics. To evaluate whether the ex-
pression of GREMI is related to the prognosis of tumor patients,
K-M survival curves and log-rank tests compared differences in
OS in groups with low-GREM1 and high-GREM1 expression
(Fig. 2). As shown in Figure 2e (LUSC), Figure 2i (KIRC), Fig-
ure 2j (KIRP), and Figure 21 (UCEC), OS was shorter in groups
with high-GREM1 expression than it was in groups with low-
GREMI1 expression (all p < 0.05). These results indicate that the
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Fig. 1. Expression pattern of GREM1 at the pan-caner level. (a) mRNA expression level of GREM1 in pan-cancer from the TCGA database. (b) mRNA expression
level of GREM1 in pan-cancer from the TCGA target GTEx datasets. (c) Protein expression level of GREM1 in pan-cancer from the CPTAC database. (d) Down-
regulation of GREM1 at mRNA level in endometrial cancer tissues from the TCGA database. (e) Downregulation of GREM1 at mRNA level in endometrial cancer
tissues from the TCGA target GTEx datasets. (f) Downregulation of GREM1 at the protein level in endometrial cancer tissue from the CPTAC database. (g) Im-
munohistochemical staining of GREM1 in normal endometrial tissue from the HPA database. (h) Immunohistochemical staining of GREM1 in endometrial cancer
tissue from the HPA database. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). ACC, adrenocortical carcinoma; CESC, cervical squamous cell carcinoma
and endocervical adenocarcinoma; CPTAC, Clinical Proteomic Tumor Analysis Consortium; GBM, glioblastoma multiforme; GREM1, Gremlin-1; GTEX, genotype-
tissue expression; HPA, Human Protein Atlas; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, low-grade glioma; PAAD,
pancreatic adenocarcinoma; TCGA, The Cancer Genome Atlas; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.

prognostic outcome of tumor patients with high GREM1 expres-
sion was poor. Additionally, we investigated the relationship be-
tween GREM1 expression and clinicopathological characteris-
tics in 11 tumor types (excluding GBM datasets with insufficient
clinicopathological features). Figure 3, shows the expression dis-
tribution of GREM1 in groups with diverse clinicopathological
characteristics. Interestingly, we observed that the expression of
GREMI1 was closely linked to at least one characteristic in dif-
ferent tumor types, including BRCA (Fig. 3a), HNSC (Fig. 3c),
LUSC (Fig. 3e), STAD (Fig. 3f), KIRC (Fig. 3h), KIRP (Fig. 3i),
THCA (Fig. 3j), and UCEC (Fig. 3k). Compared with patients
with lower N-stage tumors, those with advanced N-stage had sig-
nificantly different GREM1 expression levels in BRCA (Fig. 3a),
HNSC (Fig. 3c), LUSC (Fig. 3¢), KIRC (Fig. 3h), and THCA
(Fig. 3j). Additionally, the expression of GREM1 was upregu-
lated in advanced T-stage patients with STAD (Fig. 3f), KIRC
(Fig. 3h), KIRP (Fig. 3i), and THCA (Fig. 3j). Regarding tumor
grading and staging, the over-expression patterns of GREM1 in
advanced grade and stages were observed in STAD (Fig. 3f),
KIRC (Fig. 3h), KIRP (Fig. 3i), THCA (Fig. 3j), and UCEC (Fig.
3k). It is noteworthy that endometrial cancer young patients with
advanced tumor stages had higher GREM1 expression. Taken to-
gether, these results show that the high expression of GREM1 is
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relevant to poor prognosis and worse clinicopathological features
of LUSC, KIRC, KIRP, and UCEC, which indicate its pivotal
function in tumor development.

Identification of DEGsS in low and high GREM1 groups

To identify the high GREM1-related genes, we first divided 554
endometrial cancer samples into low-GREM1 group (n = 277)
and high-GREM1 group (n = 277) according to the medium ex-
pression value of GREM1 and performed DEGs analysis. We
screened out a total of 65 DEGs, of which 64 genes were up-
regulated and one gene was downregulated in the high-GREM1
group (Fig. 4a). The heatmap shows a distinct expression pattern
of 65 DEGs between the low-GREM 1 and high-GREM1 groups
(Fig. 4b). KEGG enrichment analysis showed that upregulated
DEGs participated in the organization of the extracellular ma-
trix, integrin cell-surface interactions, ECM proteoglycans, col-
lagen chain trimerization, and degradation of the extracellular
matrix (Fig. 4c). We further depicted the interaction network of
the top 10 KEGG enriched pathways through the Bayesian infer-
ence (Fig. 4d), indicating the core roles of extracellular matrix
organization, integrin cell-surface interactions, ECM proteo-
glycans, and degradation of the extracellular matrix with more
edges and gene counts. These results showed that upregulation
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Fig. 2. K-M curves of OS in low-GREM1 and high-GREM1 expression groups in 12 cancer types. (a) BRCA. (b) CHOL. (c) HNSC. (d) LUAD. (e) LUSC. (f) STAD. (g)
GBM. (h) KICH. (i) KIRC. (j) KIRP. (k) THCA. (I) UCEC. Red marks indicate a statistical difference. BRCA, breast invasive carcinoma; CHOL, cholangiocarcinoma;
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DEGs may highly cooperate with the extracellular matrix in en-
dometrial cancer.

Crucial module with GREM1 by WGCNA

To further identify the high GREM1-related genes, WGCNA was
carried out to develop a gene co-expression network and identify
genes from the high GREM1-correlated module. First, the opti-
mal soft threshold power (B = 2) was determined to generate a
gene co-expression network (Fig. 5a). Then, seven modules were
identified after the dynamic tree cut and merge (Fig. 5b). We then
related the traits (low-GREM1 and high-GREM1 groups) to the
modules, obtaining a brown module with the highest positive as-
sociation to the high-GREM1 group (R = 0.4, p <0.001; Fig. 5c).
A significant positive correlation of gene significance (GS) and
module membership (MM) was observed in the ME brown module
(R=0.51, p<0.001; Fig. 5d), which suggested the genes from the
ME brown module were associated with GREM1 and the most
significant elements of the modules correlated with GREM1. Fi-

nally, we obtained 1,043 genes from the ME brown module for
further analysis.

Critical patterns with GREM1 by Mfuzz clustering analysis

Mfuzz clustering analysis was first conducted according to the
ascending GREM1 expression levels, combined with ssGSEA
marked clustering scores for expression characteristics, to screen
out GREM1 a highly positive expression pattern. A total of 50
expression patterns clustering on GREM1 expression were ob-
tained (Fig. 6a and b). We then carried out ssGSEA to classify
tumor samples into distinct patterns with the identified Mfuzz
clustering results, and each sample was assigned to a certain clus-
tering pattern. Subsequently, Spearman’s correlation between
distinct clustering patterns and GREM1 was investigated (Fig.
6¢). Three critical patterns significantly positive for GREM1
were then identified (R > 0.4, p < 0.001; Fig. 6d, e, and f), in
which 901 genes obtained from these patterns were obtained for
further selection.
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Inference of biological functions, pathways, and diseases of the
hub genes

We took the intersection of 64 upregulated DEGs, 1,043 genes
in the ME brown module, and 901 genes in three critical cluster-
ing patterns as 57 hub genes with GREM1 (Fig. 7a). GO, DO,
and KEGG enrichment analyses were then performed to explore
the potential biological functions, pathways, and diseases of the
selected hub genes. As shown in Figure 7b, the majority of the
hub gene-enriched GO terms were related to extracellular matrix

and collagen, mainly including extracellular matrix organization,
collagen-containing extracellular matrix, and extracellular ma-
trix structural constituents. The top 20 significant terms of DO
enrichment analysis are shown in Figure 7c. Notably, the hub
genes were enriched in several DO terms involving gynecologic
tumors, such as uterine benign neoplasm, uterine fibroid, female
reproductive organ benign neoplasm, and reproductive organ be-
nign neoplasm, which indicated the linkage of hub genes and uter-
ine tumors. Moreover, the KEGG enrichment analysis suggested
that the upregulation of hub genes may participate in extracellu-
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lar matrix-related pathways, including ECM-receptor interaction,
focal adhesion, and proteoglycans in cancer (Fig. 7d). Figure 7¢
further depicts the interaction of enriched genes and the top five
significant pathways, in which FN1 and THBS1 were the common
genes enriched in ECM-receptor interaction, focal adhesion, and
proteoglycans in cancer.

Machine learning-based combination and PPI network identi-
fied key genes

A total of 113 machine learning-based integration was fitted to
the training and test cohorts via the leave-one-out cross-validation
framework. As shown in Figure 8a, the combination of GLM-
Boost and RF was the optimal model performed with the high-
est average AUC score (0.698) in the training and test cohorts.
Subsequently, we obtained 12 genes (FAP, THBS1, POSTN, IN-
HBA, ASPN, COL3A1, DES, IGFBP5, COL8AI, FNI, COL542,
EMILINT) screened by the model. We then selected the 10 genes
with the highest betweenness in the PPI network of GREM1 (Fig.
8b), thus identifying a final set of 10 key genes highly associated
with GREM1 (FAP, THBSI, POSTN, INHBA, ASPN, COL3Al,
IGFBPS5, COL8AI, FN1, COL5A42). The chromosomal locations
of GREMI and 10 genes are shown in Figure 8c. The PCA score
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plots showing the 10 genes clearly distinguish the low-GREM1
and high-GREM1 groups within the training and test cohorts (Fig.
8d and e). The significant expression differences of THBS1, ASPN,
COL3A41, COL542, COL8A41, INHBA, POSTN, and FAP between
low-GREM1 and high-GREM!1 groups in the training and test co-
horts are shown in Figure 8f and g. Additionally, the positive cor-
relation patterns of GREM1 and the 10 genes within the training
and test cohorts are shown in Figures 8h and i.

Assessment of key genes for distinguishing the low-GREM1 and
high-GREM1 groups

We constructed logistic regression models within the training and
test cohorts to assess the classification performance of the 10 genes
in low- and high-GREM1 groups. The nomograms intuitively vis-
ualized the logistic regression model established in the 10 genes
within the training cohort (Fig. 9a). The excellent differentiation
on low- and high-GREMI1 groups of the models was evaluated by
the AUC scores (all AUC > 0.8; Fig. 9b and c). In addition, the
calibration curves showed a minor error between the predicted
probability and actual probability, showing the high classification
accuracies of the models (Fig. 9d and e). The DCA curves showed
that the model deviated from the none and all baselines below the
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Fig. 7. Potential biological functions, associated diseases, and signaling pathways of 57 hub genes. (a) Venn diagram of 57 overlapping genes among 65
DEGs, 1043 genes in ME brown module by WGCNA, and 901 genes obtained from three clustering modules. (b) GO enrichment analysis of hub genes. (c) DO
enrichment analysis of hub genes. (d) Heatmap depicting the enrichment pathways including hub genes. (e) Chord diagram of the top five KEGG pathways
interacting with the enriched genes. AGE-RAGE, advanced glycation end products; cGMP-PKG, cyclic guanosine monophosphate-protein kinase G; cAMP,
cyclic adenosine monophosphate; DEGs, differentially expressed genes; DO, disease ontology; ECM, extracellular matrix; GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PI3k-Akt, phosphatidylinositol 3 kinase protein kinase B; TGF-B, transforming growth factor-beta; WGCNA, weighted

gene co-expression network analysis.

high-risk threshold, which ranged from 0 to 1 and further dem-
onstrated the classification ability and certain application of the
models in the training and test cohorts (Fig. 9f and g). These re-
sults suggest the critical role of 10 genes closely associated with
GREMI in endometrial cancer.

Inference of the pathways regulated by key genes and GREM1

The Bayesian inference-generated regulation network between
GREMI and key genes is shown in Figure 10a. The network
demonstrated the intricate crosstalk between key genes that domi-
nated through GREMI1 as the upstream regulator. To reveal the
potential pathways regulated by 10 genes and GREMI1, we car-
ried out KEGG enrichment analysis. Figure 10b shows the top 12
significant pathways of the 10 genes and GREM1. Among the en-
riched pathways, many extracellular matrix and collagen-related
pathways were observed, such as integrin cell-surface interactions,
extracellular matrix organization, nonintegrin membrane-ECM
interactions, ECM proteoglycans, degradation of the extracel-
lular matrix, collagen chain trimerization, assembly of collagen
fibrils and other multimeric structures, and collagen degradation.
We performed Bayesian inference of the enrichment pathways
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and gene expression profile to elucidate the pathway interactions.
We obtained an interaction network of the enriched 12 pathways
(Fig. 10c) in which integrin cell-surface interactions (Fig. 10d),
extracellular matrix organization (Fig. 10e), ECM proteoglycans
(Fig. 101), degradation of the extracellular matrix (Fig. 10g), and
collagen degradation (Fig. 10h) were cores with more edges and
similarities in the network. The enriched gene interactions in the
core pathway are also shown. Generally, five enriched genes (FN/,
COL3A1, THBS1, COL5A2, and COL8AI) were observed in the
networks. Of these genes, FN1 and THBSI proved to be signifi-
cant in the previous KEGG enrichment analysis, suggesting they
have potential crucial roles along with GREM1 in endometrial
cancer. The HPA database was searched to obtain experimental
evidence of the expressions of these five common enriched key
genes at the protein level. Immunohistochemical analysis of four
genes, COL3A41, COL8A1, FNI, and THBSI, were obtained (Fig.
10i-1). According to the staining and intensity levels (Fig. 101, k
and 1), upregulation of COL3A1, FN1, and THBS1 was observed
in endometrial cancer tissue and COL8A 1 protein was not detected
(Fig. 10j). The experimental evidence verified the in-silico results
and further indicate transactivation of these key genes in endo-
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Fig. 8. Feature selection of 57 genes with integration of machine learning algorithms. (a) A total of 113 integrations of machine learning algorithms se-
lected 57 feature genes; AUC scores for each integration were then calculated. (b) PPI network of GREM1 and 10 core genes identified by the betweenness
algorithm. (c) Chromosomal locations of GREM1 and 10 core genes. (d) Three-dimensional PCA score plot showing the 10 core genes that distinguished the
low-GREM1 and high-GREM1 groups in the training cohort. (e) Three-dimensional PCA plot showing the 10 core genes that distinguished the low-GREM1
and high-GREM1 groups in the and test cohort. (f) Expression of 10 core genes in the low-GREM1 and high-GREM1 groups in the training cohort. (g) Expres-
sion of 10 core genes in the low-GREM1 and high-GREM1 groups in the test cohort. (h) Correlation heatmap of 10 core genes with GREM1 in the training
cohort. (i) Correlation heatmap of 10 core genes with GREM1 in the test cohort. AUC, area under curve; GREM1, Gremlin-1; PCA, principal component

analysis; PPI, protein-protein interaction; TCGA, The Cancer Genome Atlas.

metrial cancer, particularly over-expression of COL341, FNI, and
THBS] at the protein level. To gain insight into the GREM1-regu-
lated mechanism, we also investigated the relationship of fibrotic
status and GREM1 expression in 12 types of cancer. Leveraging

12

the ECM signatures reflecting the fibrotic status, we observed that
it was positively correlated with GREM1 expression of (all R >
0, p <0.001) in these cancer types (Fig. 11). These results further
showcased the role of GREM1 in tumor fibrosis of various cancers.
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Expression profiles of immune infiltration cells and correlation
analysis

To investigate whether the immune infiltration cells varied in the
low-GREM1 and high-GREM1 groups, we performed CIBER-
SORT and ssGSEA of the gene expression profiles. The results
showed the expression profiles of immune infiltration cells (Fig.
12a and b), in which CD8+ T cells, CD4+ memory resting T cells,
and MO macrophages were the main cell types that infiltrated en-
dometrial cancer (Fig. 12a). The infiltration of 10 immune cells
in the low-GREM1 and high-GREM1 groups was evaluated by
CIBERSORT (Fig. 12¢). Regarding the ssGSEA results, a total of
16 immune cells had significantly different expression in the low-
and high-GREM1 groups (Fig. 12d). Additionally, correlation of
immune-cell infiltration and 11 genes (including GREM1) was ex-
plored (Fig. 12¢ and f). Interestingly, infiltration of mast cells was
upregulated in the high-GREM1 groups and was positively cor-
relation with ASPN, COL3A1, FAP, GREM1, IGFBPS, POSTN,
THBS1, which suggested the mast cells were highly influenced by
GREMI in endometrial cancer.

Discussion

GREMI involvement in carcinogenesis has been investigated and
is seen as a prospective therapeutic target in various malignan-
cies.” 1031 Nevertheless, the role of GREM1 in endometrial cancer
and its association with immune cells is not well understood. Herein,
a comprehensive bioinformatics analysis combined with a machine
learning-based combination was applied to reveal the potential
mechanism of GREM1 in endometrial cancer. Inspired by evidence
that GREM1 over-expression inhibits epithelial-to-mesenchymal
transition in pancreatic cancer,” we wondered whether a similar
mechanism occurred in endometrial cancer. We focused the analy-
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sis on the expression profiles of cancer tissues with high-GREM1
expression in the TCGA and GEO databases. We first found down-
regulation of GREM1 mRNA and protein in endometrial cancer,
which was consistent with the expression pattern previously re-
ported in pancreatic cancer.” Downregulation of GREM1 expres-
sion was observed in glioblastoma. Although we found overall
downregulation of GREM1 in endometrial cancer, the heterogeneity
of cancer exists, suggesting a certain cell population with a higher
GREMI expression pattern. Additionally, we performed prognosis
and clinicopathological analysis of GREM1 in 12 cancer types in
the TCGA database. The expression of GREM1 was significantly
different from that in normal controls (up/downregulation pattern).
The results indicated that high expression of GREM1 predicted poor
prognosis (shorter OS) and clinicopathological features (advanced
tumor grade/stage) in lung squamous cell carcinoma, kidney renal
clear cell carcinoma, kidney renal papillary cell carcinoma, and en-
dometrial carcinoma. We thus suggest that the patients with tumors
that have high GREM1 expression have poor clinical outcomes, in-
dicating that GREM1 contributes to tumor progression.

Then, we classified the endometrial cancer samples into low-
GREMI and high-GREM1 groups. We screened out a total of 65
DEGs (64 upregulated genes and one downregulated gene) be-
tween these two groups. Subsequently, WGCNA was performed
to discern the ME brown module highly positively linked to high-
GREMI trait, of which 1,043 genes were included. Together with
ssGSEA scoring and correlation analysis, Mfuzz clustering was
also conducted to screen out three high-GREM1-related gene ex-
pression patterns containing 901 genes. We took the intersection
of the 64 upregulated DEGs, 1,043 genes identified by WGCNA,
and Mfuzz-selected 901 genes. We observed a set of 57 overlap-
ping genes, indicating that the prefeature selection procedure using
multiple bioinformatics methods was reliable and accessible. In
addition, we conducted DO, GO, and KEGG enrichment analy-
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sis on the selected 57 hub genes to investigate the biological pro-
cesses and pathways in endometrial cancer. Interestingly, the hub
genes were enriched in uterine benign neoplasms, uterine fibroids,
female reproductive organ benign neoplasms, and reproductive
organ benign neoplasms, suggesting an association between the
hub genes and uterine carcinomas. Furthermore, GO and KEGG
analysis indicated that the hub genes were enriched in extracellular
matrix-related terms, including extracellular matrix organization,
collagen-containing extracellular matrix, ECM-receptor interac-
tion, focal adhesion, and proteoglycans in cancer. We speculate
that the hub GREM1 genes participate in ECM-related pathways.
Deregulated ECM dynamics, such as collagen deposition or an
increase in ECM stiffness,?? are signatures of tumor proliferation
and metastasis. It is well known that ECM is a complex and dy-
namic environment mainly composed of collagen, proteoglycans,
laminin, and fibronectin.?? Thus, we also wondered which specific
ECM composition was a great contribution or highly correlated to
the higher level of GREM1, further exploring the underlying regu-
latory relationship with GREM1 in endometrial cancer.

To define the underlying molecular mechanism of GREMI1

DOI: 10.14218/GE.2023.00095 | Volume 00 Issue 00, Month Year

more precisely in endometrial cancer, feature selection on the hub
genes was still needed. Herein, the machine learning-based inte-
grative procedure was taken for feature selection. We obtained a
total of 12 genes (FAP, THBSI, POSTN, INHBA, ASPN, COL3A1,
DES, IGFBP5, COL8AI, FNI1, COL5A42, and EMILIN]I) via best-
performance algorithm integration (GLMBoost target RF) with the
highest AUC scores. To explore whether the functional associa-
tions between the 12 genes and GREM exist, we constructed a PPI
network interacting with 12 genes and GREM1. Using Cytoscape
software, we calculated the betweenness of 12 genes and GREM1
in the network. DES and EMILINI, with zero betweenness were
excluded, and a PPI network composed of 10 genes and GREM1
was then visualized. We thus obtained a final set of 10 genes (FAP,
THBSI1, POSTN, INHBA, ASPN, COL3A1, IGFBPS5, COL8AI,
FNI, and COL5A2), which are considered as key GREM1 genes.
Using three-dimensional PCA score plots, we observed the clas-
sification performances of key genes in low-GREMI1 and high-
GREMI groups. The elevated expression of key genes in the high-
GREMI1 groups was then demonstrated, following their positive
expression correlations with GREM1, which implies that the co-
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Fig. 12. Inference of immune-cell composition on the expression profile through CIBERSORT and ssGSEA algorithms. (a) Bar plot showing the relative composi-
tion of 22 kinds of immune cells in the low-GREM1 and high-GREM1 expression groups through CIBERSORT. (b) Heatmap of the relative infiltration abundance
of 28 kinds of immune cells in the low-GREM1 and high-GREM1 expression groups by ssGSEA. (c) Levels of immune-cell infiltration in the low-GREM1 and
high-GREM1 expression groups compared via CIBERSORT. (d) Levels of immune-cell infiltration in low-GREM1 and high-GREM1 expression groups compared via
ssGSEA. (e) Correlation heatmap of 10 key genes and the infiltration of immune cells based on the CIBERSORT results. (f) Correlation heatmap of 10 core genes
and the infiltration levels of immune cells based on the ssGSEA results. CIBERSORT, Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts;
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expressions of key genes and GREM1 exist in endometrial cancer.

To systemically assess the classification abilities of key genes
from the low-GREM 1 and high-GREM1 groups, we established lo-
gistic regression models, following ROC curves, calibration curves,
and DCA curves as evaluation indexes. We noted robust AUC
scores, strong calibrations, and distinct utility of the discrimina-
tion models within the training and test cohorts. These results show
that the key genes were clearly distinguished in the low-GREM1
and high-GREMI1 groups, indicating their expression was similar
to that of GREMI1. The key genes were subjected to KEGG en-
richment analysis, together with conducting BN inference on the
enriched pathways and gene expression patterns. Interestingly, the
key genes were also enriched in extracellular matrix-related path-
ways, especially those related to ECM structural constituent and
dynamic changes. Through the pathway interaction based on BN
inference, we found integrin cell-surface interactions, extracellular
matrix organization, ECM proteoglycans, degradation of the extra-
cellular matrix, and collagen degradation were core pathways. We
then investigated the gene interactions of the core pathways and ob-
served five common genes (FNI, COL3A1, THBS1, COL5A42, and
COLS8A1) enriched in the interactions. Notably, the collagen genes
COL3A41, COL5A42, and COL8AI almost occurred in the enriched
pathways, suggesting the critical role of collagen in ECM-related
pathways. Moreover, we obtained immunohistochemical staining
results of FN1, COL3A41, THBS1, and COL8AI in endometrial can-
cer from the HPA database, which was as external experimental
evidence supporting our analysis. These results showcased the el-
evated expression of FN1, COL3A1, and THBSI1 proteins in endo-
metrial cancer, which strengthened the in-silico conclusions.

Recent studies have demonstrated that COL3A1 over-expres-
sion leads to poor prognosis or promotes cancer cell progression in
several malignancies, including bladder cancer, colorectal cancer,
and triple-negative breast cancer.*-37 Similarly, recent evidence
has revealed that COL5A2 or COL8A1 expression was related to
poor prognosis or tumor progression,3#45 also highlighting their
potential diagnostic values for different malignancies.?%4647 FN1,
acting as an upstream or downstream regulator, was previously
shown to promote or inhibit tumor progression in various malig-
nancies.**-5! THBS1 was found to positively associate with aggres-
sive tumor development and progression.52-5* Additionally, elevat-
ed microvessel counts were detected in endometrial cancer patients
with high THBS1 expression, suggesting a role of THBS1 in tumor
angiogenesis.>® But few studies reported roles of FNI, COL3A1,
THBSI1, COL5A42, and COL8A1 in endometrial cancer, more stud-
ies are warranted. Taken together, we hypothesize that GREM1 is
involved in the modulation of ECM-related pathways, especially
those mainly regulated by collagen genes. Modulation of the ECM
may allow for tumor invasion or metastasis, which has been shown
in studies of estrogen receptor-negative breast cancer.3¢

The tumor microenvironment, especially immune-cell infiltra-
tion, was shown to be linked to ECM modulation in tumor pro-
gression.5”38 Leveraging the CIBERSOT and ssGSEA algorithms,
the infiltration of immune cells in low-GREM1 and high-GREM1
groups was measured to explore the linkage of GREM1 and the
tumor microenvironment of endometrial cancer. We aimed to
identify the specific immune cells correlated with GREM1 and
its interactive key genes, with the upregulation of infiltration in
high-GREMI1 groups. Differential expression analysis showed that
the infiltration of mast cells was elevated in high-GREM1 groups.
Analysis of correlations with immune-cell subtypes revealed
that mast cell infiltration levels were positively associated with
GREMI and key genes. Previous evidence supports the linkage
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between increased mast cell count and the progression of endome-
trial cancer, such as angiogenesis.>® Furthermore, the high density
of mast cells is significantly associated with myometrial invasion
in endometrial cancer, which shows the function of mast cells in
tumor progression.®® However, because of the limited number of
reports on how mast cells contribute to the progression of endo-
metrial cancer, more functional studies are required to clarify their
role. Overall, our data indicate that mast cell infiltration in endo-
metrial cancer may be influenced by ECM modulation, which is
correlated with GREM and key genes.

Conclusions

Our results suggest the regulation of ECM-related signal path-
ways in endometrial cancer by GREM1 expression, most likely
with ECM degradation regulated by collagen genes (COL3A41,
COL5A2, and COL8A1). Additionally, we found that the expres-
sion of GREM1 and its key genes were positively correlated with
mast cells infiltrated in endometrial cancer. The infiltration lev-
els of mast cells were upregulated in higher-GREM1 expression
groups. These results suggested that mast cells could be used as
a marker of immune infiltration in aggressive endometrial cancer
having higher GREM1 expression. Overall, our study shows that
GREMI1 expression correlated with endometrial cancer progres-
sion by regulating ECM modulation, which adds to our under-
standing of the molecular effects of GREM1 and is a reference for
further functional studies in endometrial cancer.
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